TSTP Solution File: SYN375^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SYN375^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n188.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:38:18 EDT 2014

% Result   : Theorem 0.40s
% Output   : Proof 0.40s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SYN375^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n188.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 09:30:51 CDT 2014
% % CPUTime: 0.40 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x166c098>, <kernel.DependentProduct object at 0x1665320>) of role type named cP
% Using role type
% Declaring cP:(fofType->Prop)
% FOF formula (((and ((forall (Xx:fofType), (cP Xx))->((ex fofType) (fun (Xy:fofType)=> (cP Xy))))) (((ex fofType) (fun (Xy:fofType)=> (cP Xy)))->(forall (Xx:fofType), (cP Xx))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx)))) of role conjecture named cX2126_BUG
% Conjecture to prove = (((and ((forall (Xx:fofType), (cP Xx))->((ex fofType) (fun (Xy:fofType)=> (cP Xy))))) (((ex fofType) (fun (Xy:fofType)=> (cP Xy)))->(forall (Xx:fofType), (cP Xx))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx)))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(((and ((forall (Xx:fofType), (cP Xx))->((ex fofType) (fun (Xy:fofType)=> (cP Xy))))) (((ex fofType) (fun (Xy:fofType)=> (cP Xy)))->(forall (Xx:fofType), (cP Xx))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx))))']
% Parameter fofType:Type.
% Parameter cP:(fofType->Prop).
% Trying to prove (((and ((forall (Xx:fofType), (cP Xx))->((ex fofType) (fun (Xy:fofType)=> (cP Xy))))) (((ex fofType) (fun (Xy:fofType)=> (cP Xy)))->(forall (Xx:fofType), (cP Xx))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx))))
% Found iff_sym00:=(iff_sym0 ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))):(((iff (forall (Xx:fofType), (cP Xx))) ((ex fofType) (fun (Xy:fofType)=> (cP Xy))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx))))
% Found (iff_sym0 ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) as proof of (((and ((forall (Xx:fofType), (cP Xx))->((ex fofType) (fun (Xy:fofType)=> (cP Xy))))) (((ex fofType) (fun (Xy:fofType)=> (cP Xy)))->(forall (Xx:fofType), (cP Xx))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx))))
% Found ((iff_sym (forall (Xx:fofType), (cP Xx))) ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) as proof of (((and ((forall (Xx:fofType), (cP Xx))->((ex fofType) (fun (Xy:fofType)=> (cP Xy))))) (((ex fofType) (fun (Xy:fofType)=> (cP Xy)))->(forall (Xx:fofType), (cP Xx))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx))))
% Found ((iff_sym (forall (Xx:fofType), (cP Xx))) ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) as proof of (((and ((forall (Xx:fofType), (cP Xx))->((ex fofType) (fun (Xy:fofType)=> (cP Xy))))) (((ex fofType) (fun (Xy:fofType)=> (cP Xy)))->(forall (Xx:fofType), (cP Xx))))->((iff ((ex fofType) (fun (Xy:fofType)=> (cP Xy)))) (forall (Xx:fofType), (cP Xx))))
% Got proof ((iff_sym (forall (Xx:fofType), (cP Xx))) ((ex fofType) (fun (Xy:fofType)=> (cP Xy))))
% Time elapsed = 0.086806s
% node=4 cost=-193.000000 depth=2
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% ((iff_sym (forall (Xx:fofType), (cP Xx))) ((ex fofType) (fun (Xy:fofType)=> (cP Xy))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------